

Givil Works asset management for aging infrastructure

Tuesday, August 15, 2006

Stuart Foltz and David McKay CERL / Facilities Division

My objectives

- Convince you that condition indexes are a necessary part of Asset Management
- Convince you that Cls will solve all problems
- Convince you to go home and use Cls

My objectives

- Convince you that we have to use condition indexes
- Convince you that CIs will solve all problems
- **X** Convince you to go home and use CIs
- ✓ Appreciate what information is needed for Asset Management (macro level understanding)
- ✓ See condition Indexes as a family of capabilities
- ✓ Appreciate condition assessment as an Asset Management tool

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Civil Works Infrastructure

- 25,000 miles navigable waterways
 - 237 lock chambers at 192 sites
 - 926 shallow and deep draft harbors
- Premier Federal flood damage reduction agency
 - 383 major reservoirs
 - 8,500 miles of levees
- Fourth largest electrical utility in U.S.
 - produces 25% of all hydropower
- Leading provider of water based recreation
- Environmental steward of 12,000,000 acres of public lands and water

Problems Corps-Wide

- Actual Operations & Maintenance (O&M) needs far outdistance the available dollars
 - more than 50% of locks & dams reached their design life in 2000
 - rapidly growing maintenance backlog
 - maintenance, repair, rehabilitation, enhancement
 - therefore all levels of service must be justified
- No reliable (universal and consistent) or objective means of communicating O&M needs, or of quantifying the impact of budget shortfalls exists
 - both the budget development and allocation processes are largely subjective
 - target based budget allocations (historic trend)
 - annually between 16,000 to 19,000 O&M work packages are uploaded to HQUSACE

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Executive Order 13327, "Federal Real Property Asset Management" (February 4, 2004)

http://www.whitehouse.gov/news/releases/2004/02/20040204-1.html

- Directs all major agencies to develop asset management plans.
- Creates FRPC (Federal Real Property Council) to establish guidance, and best practices.
- FRPC has identified and defined 23 mandatory Property Inventory Data Elements and Performance Measures that will be captured and reported by all agencies.

- 1. Real Property Type
- 2. Real Property Use
- 3. Legal Interest
- 4. Status
- 5. Historical Status
- 6. Reporting Agency
- 7. Using Organization
- 8. Size
- 9. Utilization (Performance Measure #1)
- 10. Value
- 11. Condition Index (Performance Measure #2)
- 12. Mission Dependency (Performance Measure #3)
- 13. Annual Operating and Maintenance Costs (Performance Measure #4)
- 14. Main Location
- 15. Real Property Unique Identifier
- 16. City
- 17. State
- 18. Country
- 19. County
- 20. Congressional District
- 21. ZIP Code
- 22. Installation and Sub-Installation Identifier
 - 23. Restrictions

FRPC Condition Index

- Assessment
 - Quick and dirty estimate
 - Network level accuracy
 - Project or component level accuracy

Program Assessment Rating Tool (PART)

- Worksheet for assessing government programs
- Focused on performance measures
- Does not directly require Asset Management but such a plan will help achieve a high score

Corps programs evaluated in PART:

- (1) Coastal Ports and Harbors (Moderately Effective)
- (2) Coastal Storm Damage Reduction (Results Not Demonstrated)
- (3) Corps Hydropower (Adequate)
- (4) Emergency Management (Moderately Effective)
- (5) Flood Damage Reduction (Results Not Demonstrated)
- (6) Inland Waterways Navigation (Results Not Demonstrated)
- (7) Non-regulatory Wetlands Activities (Results Not Demonstrated)
- (8) Recreation Management (Moderately Effective)
- (9) USACE Regulatory Program (Moderately Effective)

WRDA revision

- WRDA 2005 limits the Corps ability to re-program project money
- According to Gen Riley, Dir of CW:
 - "the goal of FY 2006 program execution would be to 'accurately schedule work' based on appropriations and carry-over funds and 'then to execute the schedule."
 - The Corps will need to develop more accurate and omniscient spending plans.

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Asset Management decision criteria

- Infrastructure condition
- Infrastructure performance
- Risk
- Economics
- Policies, Corps priorities, national priorities

- Infrastructure condition (family of capabilities)
 - Reliability
 - Failure probability
 - Probability of unsatisfactory performance
 - Serviceability
 - Expected remaining life
 - Repair needs
 - Age
 - Function
 - Risk (includes consequences)

- Infrastructure condition
 - Type of asset and inspection method
 - Light bulb
 - Motors
 - Roofing
 - Pavements
 - Mechanical equipment
 - Bridge
 - Miter gate
 - Levees
 - Spillways and dams

- Infrastructure condition
 - Business line
 - Navigation
 - Hydropower
 - Flood damage reduction
 - Recreation
 - Environment

- Intended use
 - Inspection
 - standard process
 - identify safety & reliability problems
 - Condition tracking
 - Budgeting (macro)
 - Prioritization
 - Work planning (micro)
 - Forecasting
 - Expected remaining life

NBI

Rating

9

8

Asset	Man	ag	em	ent
crite	ria			

- metrics
 - (1) measurement

may have holes through the base metal

7		Good Condition					
	CS	Description	6	Satisfactory Condition			
)	_		5	Fair C	ir Condition		
	1	No evidence of active corrosion	4	Poor Condition			
	2	Slight peeling of the paint, pitting or surfa	3	Serio	us Condition		
	3	Peeling of the paint, pitting, surface rust	2	Critical Condition			
	4	Flaking, minor section loss (<10%)	1 Imminent Failure				
	4	Flaking, swelling, moderate section loss (2 < 30%). Structural analysis not warranted		Failed	I		
	5	Flaking, swelling, moderate section loss (>10% but <30%). Structural analysis warranted		R3	(3)		
5		Heavy section loss (>30% of original thickness),		R4			

of Engineers

Description

Excellent Condition

Very Good Condition

Condition Index Benefits

- quantification of condition
- discover hidden problems
- diagnosis of concerns
- benchmarking, trends creation of a condition history
- a training tool, educational
- institutionalize knowledge
- supporting documentation for prioritization and justification of work
- tool for communication with management
- information source for contracting scopes of work
- quantification of condition
 - for components
 - for a system (report card)
- a simplified estimate of relative risk
 - a simplified estimate of reliability
- us Army Corps

 a data source for detailed risk analysis

- Infrastructure performance (function)
 - Does the infrastructure provide the intended benefit?
 - Breakwaters & Jetties
 - Rec facility
 - Levee
 - Lock
 - Buildings

- Risk (reliability)
 - Computationally precise
 - Data intensive
 - Provides measure of costs and benefits
 - Different risks aren't easily comparable

- Economics
 - Pavements
 - Minimize M&R costs
 - Navigation
 - -Reliability (minimum delays)
 - Flood Damage Reduction
 - Dam safety
 - Recreation
 - **-NED**
 - Environment
 - Preservation

- Policies, Corps priorities, national priorities
 - Mandates
 - Constituent influence
 - Balanced program

Asset Management M&R issues: (budget prioritization issues)

- Reliability based
 - Safety and failure consequences
- Condition based
 - Deteriorated
- Quality of service (public facilities)
 - Modern, aesthetic, comfortable, dependable
- Performance
 - Not designed right or the need changes

Economics and Policy

Red Rock Dam

Stewart Mountain

Stewart Mountain

Carters Dam

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Condition Index (CI)

- Systematic Process
 - condition evaluation
- Inspection Procedures
 - based upon objective measurements
 - guidance if subjectivity unavoidable

- Rating Algorithms
 - create index(es)
 - 0 to 100
- Data is Valuable
 - raw numbers meaningful
 - track & quantify changes

Condition Index Scale

Action Zone	Condition Index (CI)	Condition Description	Recommended Action	
1	85 to 100	Excellent: No noticeable defects. Some aging or wear may be visible.	Immediate action is not required.	
	70 to 84	<i>Good</i> : Only minor deterioration or defects are evident.	inimicatate action is not required.	
2	55 to 69 <u>Fair</u> : Some deterioration or are evident, but function is n significantly affected.		Economic analysis of repair alternatives is recommended to	
	40 to 54	Marginal: Moderate deterioration. Function is still adequate.	determine appropriate action.	
	25 to 39	Poor: Serious deterioration in at least some portions of the structure. Function is inadequate.	Detailed evaluation is required to	
3	10 to 24	Very Poor: Extensive deterioration. Barely functional.	determine the need for repair, rehabilitation, or reconstruction. Safety evaluation is	
	0 to 09	Failed: No longer functions. General failure or complete failure of a major structural component.	recommended.	

CI - Inland Navigation

lock gates, lockwalls, valves, dikes and revetments

CI Operating Equipment – All Business Areas

gears, couplings, racks, strut arms, rocker arms, chains, cable and hydraulic cylinders

Cls in Coastal Navigation breakwaters and jetties

Cls in Flood Control concrete dams, embankment dams, gates

CIs in Hydropower

Condition Index Benefits

- quantification of condition
- discover hidden problems
- diagnosis of concerns
- benchmarking, trends creation of a condition history
- a training tool, educational
- institutionalize knowledge
- supporting documentation for prioritization and justification of work
- information source for contracting scopes of work
- quantification of condition
 - for components
 - for a system (report card)
- a simplified estimate of relative risk
 - a simplified estimate of reliability
 - a data source for detailed risk analysis

- HQ issues
 - HQ mandated use but never looked at Cls rating
 - No policy for how to implement Cls
 - No uniformity in Cl usage
 - Funding streams
 - O&M vs CG repairs
 - Automated Budgeting System Baseline, Deferrable, Non-deferrable, Beyond ability

of Engineers

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

- Perception & Problem:
 - Cl's too expensive
 - Payback (benefit) takes some time to realize
- Objective:
 - encourage broader use of index style methodology and meet the specific need
- Approach
 - make CI procedures simpler, faster, cheaper
 - minimize impact on original technical integrity

- Two simplification approaches
 - reduction by minutiae
 - step by step with stopwatch
 - simplify measurements
 - multi level / intensity inspections
 - purpose driven
 - first asks what is the information for
 - uses yes/no format to recommend inspection levels of varying complexity

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Miter Gate Measurements

	Anchorage Movement	18% (relative importance)
•	Elevation Changes	14%
•	Miter Offset	08%
•	Bearing Gaps	13%
•	Downstream movement	11%
•	Cracks	10%
•	Leaks & Boils	05%
•	Dents	02%
•	Noise & Vibration	11%
•	Corrosion	08%

We're Trying to Reduce This

To Something Like This

Actual CI vs. Simplified CI Using Real Data

104 vertically framed leaves (decreasing CI)

- Miter Gate CI procedures
 - most "intensely objective" of all
 - nine other miter gate measurements
 - gages on anchor bars easy
 - use of binoculars in lieu of boat inspection
 - multi level / intensity check sheet will tell you if more measurements should be taken
- In many cases will be able to reduce the entire miter gate inspection time by 50% to 75%

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Simplified CI - multi-level inspection approaches

- Level 1: desktop, based on existing data
- Level 2: walk around, yes/no type questions
 - function, needs or frequency based
 - criteria for moving to Level 3 or 4 inspection
- Level 3: specific component(s)
 - simplified procedure
 - by the orange book (as designed)
- Level 4: full scale engineered evaluation

Lifting device structure (steel)										
Function	Provide structural support for the hoisting device (and carrying tracks for mobile hoisting device)									
Excellent	Comprehensive structural inspection has been performed. All critical structural members fully accessible									
	for inspection. No visible cracks, no visible member deformation, no corrosion, no missing bolts									
	or members, no visible misalignment.									
F ailed	Visible deformations, missing parts, or cracks of a load-carrying member.									
Part Tarket	Corrosion resulting in the loss of more than 20% of the cross-section of critical structural member.									
	Missing bolts or cracked welds on a facture critical member or connection (a non-redundant tensile member									
	or connection whose loss would result in the collapse of the structure).									
Indicator	0 9						85 100		Comments	
Displacement and										
deterioration										
No misalignment in a dedicated		1		· ·			Х	100		
hoisting mechanism		S 0		6 9)	d 33		c	8	
Displacement and deterioration										
of the structure causing visible										
or measurable misalignment in					1	X				
a hoisting mechanism					1	0,000				
with no effect on lifting					l .					
Displacement and deterioration										
of the structure causing visible					1					
or measurable misalignment in				X	Х					
a hoisting mechanism										
with excessive noise and					1					
vibration					l .					
Displacement and deterioration										
of the structure causing visible					1					
or measurable misalignment in		X	Х		1					
a hoisting mechanism		12	100		1					
with motor overload										
Displacement and deterioration										
of the structure causing visible										
or measurable misalignment in	X									
a hoisting mechanism	^									
that cannot be lifted										
Anchor bolts										
No corrosion							Х			
Corrosion on nuts and bolts				Х	Х	Х		80	some rust	
Cracks in the concrete around				- /\	-/\	//				
the bolt and or missing concrete		X	Х							
around the bolt		- PA	**							
At least one missing bolt or nut	Х			1		1 11				
Cracks	7.									
OTHORS		22		2		100			//	

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

of Engineers

Relative Risk Cls

- Provide framework for engineering assessment
 - Identify and quantify issues
 - No black box calculation
 - Calculations based on the engineers' priorities and ratings
- Assessment of performance (coastal)
- Risk based assessment (spillway and embankment)
- Not an inspection procedure (spillway and embankment)
- Provides measure of priority (spillway and embankment)
- Example Cls
 - Coastal structures
 - Embankment dams (geotechnical)
 - Spillways (gates struct, mech, elect, ops)

Relative Risk CIs

Embankment dams

Developers: Corps, Hydro Quebec

Users: Hydro Quebec, Manitoba Hydro, EDF

Spillways

Developers: Corps, Hydro Quebec, BurRec,

Manitoba Hydro, Ontario Hydro

Users: Hydro Quebec, Manitoba Hydro, EDF

Relative Risk Cls

- CI methods for risk analysis
 - Not a fatigue or load capacity measure
 - Does not replace reliability or risk analysis
 - Provides a simpler complement to other methods
 - Think multi-level
 - No data issues
 - Used by Hydro Quebec for all dam safety prioritization

- This presentation:
 - Corps CW infrastructure
 - Asset Management policy issues
 - An Asset Management viewpoint
 - CI basics
 - Simplification
 - minutiae example: miter gate anchorage assembly
 - multi-level inspection
 - Relative risk Cls
 - Conclusions
 - Questions

Conclusions

- Inspection and assessment of infrastructure is a valuable component of infrastructure management
- Maintenance & Repair for a large, complex and varied infrastructure requires many technical and decision support tools
- ERDC has developed processes and methodologies to support many of these decisions within the Civil Works community but more remains to be done.

My objectives (workshop)

- ✓ Appreciate what information is needed for Asset Management (macro level understanding)
- ✓ Appreciate condition assessment as an Asset Management tool
- ✓ See condition Indexes as a family of capabilities

http://www.cecer.army.mil/fl/remr/remr.html